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h i g h l i g h t s

• I studied a game-theoretical model of double-elimination tournaments.
• Compared to single-elimination tournaments, players have a second chance to compete.
• The standard version produces higher total effort than single-elimination.
• The variant version however may produce lower total effort than single-elimination.
• Granting a second chance to symmetric players may create asymmetrical incentives.
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a b s t r a c t

I examine a game-theoretical model of two variants of double-elimination tournaments, and derive the
equilibrium behavior of symmetric players and the optimal prize allocation assuming a designer aims
to maximize total effort. I compare these theoretical properties to the well-known single-elimination
tournament.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The use of elimination tournaments is prevalent in job
promotions, political elections, sports contests, and so forth.
Since the seminal contribution of Rosen (1986), models of
elimination tournaments have been frequently used to rationalize
the phenomenon of highly concentrated rewards only on the top
ranks. For instance, CEOs are often paid disproportionally higher
salaries than their immediate subordinates. A presidential election
is another extreme example of allocating rewards: winner-takes-
all. The economics literature has focused on one particular form
of elimination tournaments, single-elimination tournaments, in
which competitors who lose in one round are eliminated from the
rest of the competition. However, in many situations, competitors
are often permitted a second chance. For instance, in job promotion
competitions, organizations do not always adopt the so-called ‘‘up
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or out’’ strategy but allow employees to try again next time. Second
chance in elimination tournaments can be captured in a stylized
model of double-elimination tournaments in which a competitor
who loses in one round still has a second chance to become the
final winner.

This note presents a game-theoretical model of two variants
of double-elimination tournaments in a four-player case. By
comparing to single-elimination tournaments, I investigate how
does granting a second chance affect the strategic behavior of
symmetric players aswell as the optimal prize allocation assuming
that a tournament designer aims to maximize total effort. The two
variants differ slightly in terms of whether everyone or almost
everyone has a second chance.

With the exception of a recent experimental study by Deck
and Kimbrough (2015) who examined a similar four-player
double-elimination tournament in which each round is resolved
as an all-pay auction, economists have largely neglected this
tournament format. In contrast, Statisticians have been interested
in double-elimination tournaments for decades (e.g., Searls,
1963; Schwertman et al., 1991; Edwards, 1996). Using primarily
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simulations with specific assumptions on probability of winning
in each round, they asked which tournament format is better able
to select the best among all players. Unlike economists, they rarely
considered players’ strategic incentives.

2. The model

2.1. Single-elimination tournament

Consider 2n risk-neutral players. Let esi be the irreversible effort
expended by player iwhen there are at most s rounds ahead. Let Ps
be player i’s probability of winning in a round against player j that
follows the generalized Tullock contest success function:

Ps =
ersi

ersi + ersj
.

Assume each player incurs a linear cost of effort c(x) = x. I focus
on a restricted class of games where the contest impact parameter
r ∈ (0, 1].1

The winner of the final round is awarded the top prize W1, the
second place player receives the prize W2, losers of the semifinals
are both awarded W3, . . . , and all players who are eliminated in a
round where at most s rounds remain are awarded the prizeWs+1.
Define the prize spread 1Ws = Ws − Ws+1.

DenoteVs the valuation ofwinning for player i in a round against
player j when s rounds are ahead. Then the recursive objective
function for i is

Vs = max
esi

[PsVs−1 + (1 − Ps)Ws+1 − c(esi)].

The pure-strategy equilibrium in the round can be derived as

esi = esj =
r
4
(Vs−1 − Ws+1).

Inserting the equilibrium effort back into the objective function
gives

Vs − Ws+1 = β(Vs−1 − Ws+1),

where β =
1
2 −

r
4 and V0 = W1. Also note that

Vs − Ws+2 = β(Vs−1 − Ws+1) + 1Ws+1.

In a four-player case, using these two recursive equations gives us
the equilibrium efforts in the final and semi-final rounds
e1 =

r
4
1W1,

e2 =
r
4
(β1W1 + 1W2).

Therefore, the total effort in the four-player single-elimination
tournament is

2e1 + 4e2 =


r −

r2

4


1W1 + r1W2,

subject to the budget constraint W1 + W2 + 2W3 = V , or 1W1 +

21W2+41W3 = V . Since r ≤ 1, 2(r− r2
4 ) > r . Hence, tomaximize

the total effort, it is optimal to allocate all budget on the top prize.
As such, the optimal total effort becomes

Tsingle =


r −

r2

4


V =

r
2
(1 + 2β)V .

1 The generalized Tullock contest success function covers a wide range of
interesting cases from partially discriminating contests to varying degrees (r > 0)
to perfectly discriminating contests (r = ∞, all-pay auction), in all of which the
player exerting higher effort has a higher probability of winning. By focusing on the
restricted class of games, I make sure the existence of pure-strategy equilibrium in
each round. Furthermore, the case in which r = ∞ has been studied in Deck and
Kimbrough (2015).
2.2. Standard double-elimination tournament

Double-elimination tournaments have two variants. Fig. 1
shows a schematic representation of the double-elimination
tournament in a four-player case. In the standard version, there is
only one round in the Grand Finals, whereas in the variant version,
which will be analyzed in the next section, there are at most two
rounds in the Grand Finals.

All four players start from the Upper Bracket. Those who lose
in Round 1 fall into the Lower Bracket. Then one of the two
players in the Lower Bracket must be eliminated by competing
against each other. In Round 2, those who remain in the Upper
Bracket compete for a seat in the Grand Finals. The dash line in
the Lower Bracket denotes the player who falls into the Lower
Bracket in Round 2 and she must compete against the survivor in
the Lower Bracket for another seat in the Grand Finals. In Round
3 two finalists compete for the first place award. In the standard
double-elimination tournament, they complete only once. In the
variant version, if the finalist from the Upper Bracket loses, she has
a second chance to compete against the same opponent in Round
4.

The winner of the Grand Finals is awarded the top prizeW1, the
second place player receives the prize W2, the third place player
who got eliminated in Round 2 is awarded W3, and the last place
player who got eliminated in Round 1 gets W4. Define the prize
spread 1Ws = Ws − Ws+1. Let eqni and eqnj denote the effort level
exerted by players i and j in Roundn and Stage q that is eitherUpper
(q = U) or Lower (q = L) Bracket or Grand Finals (q = F ).

Denote Vqn the valuation of winning for player i against player
j in Round n and Stage q. The game produces a system of recursive
objective functions, which can be worked out backwardly.

In Round 3 and in the Grand Final, F3, player i has the following
objective function:

VF3 = max
eF3i

[PF3W1 + (1 − PF3)W2 − c(eF3i)].

Solving thismaximizationproduces thepure-strategy equilibrium:

eF3 =
r
4
1W1.

Inserting them back into the objective function gives

VF3 − W2 = β1W1, (1)

where β =
1
2 −

r
4 .

In Round 2, the matches in the Upper and Lower Brackets need
separate considerations. For the players in the Lower Bracket, L2,
their objective function is

VL2 = max
eL2

[PL2VF3 + (1 − PL2)W3 − c(eL2)],

and solution

eL2 =
r
4
(VF3 − W3); VL2 − W3 = β(VF3 − W3). (2)

For the players in the Upper Bracket, U2, their objective function
becomes

VU2 = max
eU2

[PU2VF3 + (1 − PU2)VL2 − c(eU2)],

and solution

eU2 =
r
4
(VF3 − VL2); VU2 − VL2 = β(VF3 − VL2). (3)

Finally, in Round 1, for the players in the Lower Brackets, L1,
their objective function is

VL1 = max
eL1

[PL1VL2 + (1 − PL1)W4 − c(eL1)],
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Fig. 1. A representation of the double-elimination tournament in a four-player game.
and solution

eL1 =
r
4
(VL2 − W4); VL1 − W4 = β(VL2 − W4). (4)

For the players in the Upper Bracket, U1, their objective function
becomes

VU1 = max
eU1

[PU1VU2 + (1 − PU1)VL1 − c(eU1)],

and solution

eU1 =
r
4
(VU2 − VL1); VU1 − VL1 = β(VU2 − VL1). (5)

Summing up these equilibrium efforts and recursive equations
(1)–(5),we can solve all equilibriumefforts as functions of the prize
spreads:

eF3 =
r
4
(1W1)

eL2 =
r
4
(β1W1 + 1W2)

eU2 =
r
4
(β(1 − β)1W1 + (1 − β)1W2)

eL1 =
r
4
(β21W1 + β1W2 + 1W3)

eU1 =
r
4
(2β2(1 − β)1W1 + 2β(1 − β)1W2 + (1 − β)1W3).
Therefore, the total effort in the four-player standard double-
elimination tournament is

2(eF3 + eL2 + eU2 + eL1 + 2eU1)

=
r
2
{1W1(1 + 2β + 4β2

− 4β3) + 1W2(2 + 4β − 4β2)

+ 1W3(3 − 2β)},

subject to the budget constraint W1 + W2 + W3 + W4 = V ,
or 1W1 + 21W2 + 31W3 + 41W4 = V . Since r ≤ 1 and
1/4 ≤ β < 1/2, 2(1 + 2β + 4β2

− 4β3) > 2 + 4β − 4β2 and
3(1 + 2β + 4β2

− 4β3) > 3 − 2β . The total-effort-maximizing
prize allocation is to place all budget on the top prize. As such, the
optimal total effort is

TSdouble =
r
2
(1 + 2β + 4β2

− 4β3)V .

2.3. Variant double-elimination tournament

Consider the four-player variant double-elimination tourna-
ment. In Round 4 and the second match of the Grand Finals, F4,
each player has the following objective function

VF4 = max
eF4

[PF4W1 + (1 − PF4)W2 − c(eF4)].

We know that PF4 = 1/2 and eF4 =
r
41W1, which in equilibrium

lead to

VF4 − W2 = β1W1. (6)
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In Round 3, consider the two finalists separately; one finalist
has climbed from the Upper Bracket and the other from the
Lower Bracket. Denote the probability ofwinning and the valuation
of winning the current round for the finalist from the Upper
Bracket as PU

F3
and VU

F3
, and those for the other finalist from the

Lower Bracket as PL
F3

and V L
F3
. Thus for the advantaged finalist, the

objective function is

VU
F3 = max

eUF3

[PU
F3W1 + (1 − PU

F3)VF4 − c(eUF3)].

For the disadvantaged finalist, the objective function becomes

V L
F3 = max

eLF3

[PL
F3VF4 + (1 − PL

F3)W2 − c(eLF3)].

Note that PU
F3

+ PL
F3

= 1, PU
F3

=
(W1−VF4 )r

(W1−VF4 )r+(VF4−W2)r
> 1

2 , and define

βU
F3

= PU
F3

(1−rPU
F3

); βL
F3

= PL
F3

(1−rPL
F3

), which in equilibrium lead
to

eUF3 = rPU
F3(1 − PU

F3)[W1 − VF4 ];

VU
F3 − VF4 = βU

F3 [W1 − VF4 ],
(7)

eLF3 = rPU
F3(1 − PU

F3)[VF4 − W2];

V L
F3 − W2 = βL

F3 [VF4 − W2].
(8)

The derivations of equilibrium efforts and recursive equations
in Rounds 2 and 1 are similar to those in the standard version, and
details are omitted here. In Round 2, for the players in the Lower
Bracket,

eL2 =
r
4
[V L

F3 − W3]; VL2 − W3 = β(V L
F3 − W3). (9)

For the players in the Upper Bracket,

eU2 =
r
4
[VU

F3 − VL2 ]; VU2 − VL2 = β(VU
F3 − VL2). (10)

In Round 1, for the players in the Lower Bracket,

eL1 =
r
4
[VL2 − W4]; VL1 − W4 = β(VL2 − W4). (11)

For the players in the Upper Bracket,

eU1 =
r
4
[VU2 − VL1 ]; VU1 − VL1 = β(VU2 − VL1). (12)

Summing up these equilibrium efforts and recursive equations
(6)–(12), we can solve all equilibrium efforts as functions of the
prize spreads

eF4 =
r
4
1W1,

eUF3 = rPU
F3(1 − PU

F3)(1 − β)1W1,

eLF3 = rPU
F3(1 − PU

F3)β1W1,

eL2 =
r
4
[βL

F3β1W1 + 1W2],

eU2 =
r
4
[(βU

F3(1 − β) + β − βL
F3β

2)1W1 + (1 − β)1W2],

eL1 =
r
4
[βL

F3β
21W1 + β1W2 + 1W3],

eU1 =
r
4
[(βU

F3β(1 − β) + β2
+ (1 − 2β)β2βL

F3)1W1

+2β(1 − β)1W2 + (1 − β)1W3],
Table 1
Parallel comparisons of equilibrium efforts in each
match.

Match Effort comparisons

F3 , F4 eF3 = ẽF4
L2 eL2 > ẽL2
U2 eU2 < ẽU2
L1 eL1 > ẽL1
U1 eU1 < ẽU1

where PU
F3

=
(1−β)r

(1−β)r+(β)r . Therefore, the total effort in the variant
double-elimination tournament is

TVdouble = eUF3 + eLF3 + 2(1 − PU
F3)eF4

+ 2(eL2 + eU2 + eL1 + 2eU1)

=
r
2
{1W1[(2PU

F3 + 1)(1 − PU
F3) + βL

F3(β + 2β2
− 4β3)

+ βU
F3(1 + β − 2β2) + β + 2β2

]

+ 1W2[2 + 4β − 4β2
] + 1W3[3 − 2β]}. (13)

Note that the weights on 1W2 and 1W3 are exactly the same in
the two versions of double-elimination tournaments. However, I
cannot unambiguously conclude the total-effort-maximizing prize
allocation is to place all the budget on the top prize. Specifically,
there is a small regionof r close to 1where it is optimal tomaximize
the prize spread 1W2.

In the firstmatch of the Grand Finals, the finalist from theUpper
Bracket works harder than the opposing finalist from the Lower
Bracket. This implies that even among a homogeneous population
a selection effect is at work. Player who fall in the Lower Bracket
will have to win more matches to reach the Grand Finals than
the finalist who has never lost. Importantly, even if one of them
survives through the Lower Bracket and reaches the Grand Finals,
she no longer enjoys another chance to lose while her opposing
finalist does.

2.4. Comparisons

Parallel comparisons of the equilibrium efforts in the standard
and the variant double-elimination tournaments reveal that the
standard version gives more incentives to players in the Lower
Bracket and less incentives to those in the Upper Bracket precisely
because of the distorted weights on 1W1. Intuitively, given that
the finalist from the Upper Bracket will have no second chance,
it becomes less attractive to be in that position. The results are
summarized in Table 1 (e for the standard, ẽ for the variant).

To compare the total efforts between the two versions, recall
that only their weights on 1W1 differ. Unfortunately, there is no
unambiguous result from this comparison. For example, if r → 0,
then PU

F3
=

1
2 , βU

F3
= βL

F3
= β =

1
2 and TSdouble < TVdouble.

But if r = 1, then PU
F3

=
3
4 , βU

F3
= βL

F3
=

3
16 < β =

1
4 and

TSdouble > TVdouble.
A conjecture is that there exists a value of r∗ in the region of

(0, 1] such that if r > r∗ then TSdouble > TVdouble, but if r < r∗ then
TSdouble < TVdouble. A numerical simulation supports this conjecture
and the threshold r∗ lies near 0.8. Thus, when the contest success
function is sufficiently discriminating, a tournament designer can
induce higher total effort in the standard version than in the variant
version in the four-player case, even though the standard version
has fewer matches.

Finally, I can unambiguously rank the total effort in single- and
double-elimination tournaments when r = 1 (i.e. probability of
winning is proportional to relative effort): TSdouble > Tsingle >
TVdouble. In fact, TSdouble > Tsingle holds any value of r .
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3. Conclusion

In this note, I examined a model of double-elimination
tournaments. In the four-player case, the standard version
produces higher total effort level than a single-elimination
tournament with the same prize budget. As in the single-
elimination tournament, a designer could maximize total effort by
allocating all budget to the first place prize. In the variant version,
granting a second chance to every player creates asymmetrical
motivations for the two finalists to win the first place prize.
Furthermore, even within the restricted class of games, it is not
always true that the total-effort-maximizing prize allocation is to
place all budget on the first place prize. It is also not possible to
unambiguously rank the total effort level between the standard
and the variant version of double-elimination tournaments
without fixing a value for the contest impact parameter; it is
possible that the variant version may produce lower total effort
level than a single-elimination tournament, even though it has
twice as many matches.
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